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DESIGN OF TIME WEIGHTED MINIMUM ENERGY 
DISCRETE~DATA CONTROL msysJ 

by 

A .  M. Revington and J .  C. Hung 

SUMMARY 

A procedure is developed for designing the time weighted minimal energy 
control of an n-th order plant. It is desired to take the state of the plant 
from some initial state to some required final state in N sampling periods, 
with N 7 n, while minimizing a time weighted cost function of the controlling 
energy. This cost function stresses the controlling action of any part of 
the input sequence and relegates the remainder of the sequence to a support- 
ing role. 

The control sequence is found in a very straightforward manner, depending 
only on a very useful matrix called the derived matrix. /#detailed example 
shows how this matrix is utilized and\demonstrates fhe advantages of this 
time weighted minimal energy control seq2ce. 
- 

INTRODUCTION 

The discrete regulator is assuming an increasingly important place in 
modern control systems. Discrete regulators are known by the type of input 
modulation; pulse amplitude modulated signals followed by a zero order hold 
(abbreviated to PAM in this report) implies that the input is held at a 
constant level during a sampling period, and allowed changes in level only 
at the sampling instants. The state of an n-th order linear time invariant 
PAM plant is described by 

- x [(k+l)T] = G(T)z(kT) + h(T) m [(k+l)T] 
where g [(k+l)T] 
sampling instant. G(T) is an nxn matrix called the state transition matrix 
and h(T) is an nxl matrix called the forcing matrix. 
input level over the time interval kT < t 4 (k+l)T. The matrices G(T) and 

is an n-vector, the state of the system at the k+l-th 

m [(k+l)T] is the 

h_(T) are obtained from the plant transfer function by standard techniques 1 . 

Kalman and Bertram" defined and then developed the 'canonical' vectors 
as the basic building blocks of the PAM regulator. These vectors, xi , 
i = 1, 2, .... N, N > n are defined in terms of the state transition and 
forcing matrices as 
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r = G(T)-i h(T) = G(-iT)_h(T) i = 1 , 2 ,  .... n ,  .... N. 
-i 

The reader  unfamil iar  with t h e i r  use i s  recommended t o  read the  papers2 which 
f i r s t  introduced and then made exce l len t  use of them. They can make a seem- 
ing ly  d i f f i c u l t  sampled-data problem seem simple. We s h a l l  show t h a t  by a 
f u r t h e r  extension of t h i s  concept, namely the  formation and employment of the  
"derived matrix," an even more d i f f i c u l t  problem, t h a t  of energy minimization, 
can be reduced t o  a set of surpr i s ing ly  simple formulae. 

I n  the  development of the  appl ica t ion  of the  canonical vec to r  concept 
i t  was shown3 t h a t  any i n i t i a l  S ta te  8 could be represented by a l i n e a r  
combination of these canonical vectors :  

k= 1 

where the  a a re  s c a l a r s .  It was a l s o  shown t h a t  t h i s  s t a t e  could be taken 
t o  the  o r i g i n  of the  s t a t e  space by applying the PAM input sequence k 

k = 1, 2 ,  .... N. (1) k '  m(kT) = - a  

Thus was demonstrated an e legant  mathematical conception of the  d i s c r e t e  
r egu la to r  which l a i d  the  foundations for f u r t h e r  work. The r egu la to r  
problem was e s s e n t i a l l y  reduced t o  f i nd ing  a r ep resen ta t ion  of the  d is turbed  
s t a t e  5 as  a l i n e a r  combination of the  canonical vec tors .  

I n  t h i s  paper we s h a l l  der ive formulae t h a t  can be d i r e c t l y  appl ied t o  
the  problem of taking the  dis turbed s t a t e  g t o  the  o r i g i n  of the  s t a t e  space 
while minimizi3g a quadrat ic  cos t  func t ion  of the  members of the  input  
sequence. 
so-cal led minimal energy problem. The more general  cos t  func t ion  considered 
here may be regarded a s  the  time weighted extension of t he  previous r e p o r t .  

I n  a previous r epor t4  techniques were developed t o  handle the  

MATHEMATICAL DEVELOPMENT 

Problem Statement 

Given the  l i n e a r  n- th  order  time inva r i an t  PAM p lan t  descr ibed by 

- x [(k+l)'r] = G(T)q(kT) + h(T) m [(k+l)T] 
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i t  i s  des i red  t o  f ind  the  input sequence m(kT), k = 1, 2,  .... N t h a t  w i l l  
take any given i n i t i a l  s t a t e  y t o  be the  o r i g i n  of the  s t a t e  space X i n  
N sampling per iods,  and t h a t  w i l l  a l so  minimize the  cos t  func t ion  

where the  d(k) are  pos i t i ve  sca l a r s .  When d(k)  = 1 f o r  a l l  k t h i s  problem 
4 reduces t o  the  minimal energy problem . 

Theory 

Associated with the  system of E q .  2 w e  have the N canonical V ~ C ~ O T S ,  N 
an i n t e g e r ,  N > n. ,  

r = G (-kT) h(T) k = 1, 2, .* . .  N .  ( 4 )  -k 

Thus a general  representa t ion  of the i n i t i a l  d i s turbed  s t a t e  i s  

N 
t 

For "completely cont ro l lab le"  systems5 n of t he  r a r e  l i n e a r l y  independent. 
Now i s  an n- rec tor ,  so t h a t  f o r  N > n  the  r ep resen ta t ion  of i n  Eq. 5 i s  
not unique, i n  o the r  words there  are an i n f i n i t e  number of r ep resen ta t ions ,  
input  sequences, which can be used t o  take  x t o  the  o r i g i n  i n  N > n  sampling 
per iods .  I f  N = n there  is a unique so lu t ion ;  the  so lu t ion  t o  the  s e t  of 
n simultaneous equat ions 

k 

n 
I 

i s  the  unique so lu t ion  t o  the  l i nea r  time-optimal r egu la to r  problem. We 
assume however 
c o s t  func t ion ,  Eq. 3 ,  has meaning. 

N>n ,  so t h a t  the  add i t iona l  problem of minimizing the  

Rewriting the  representa t ion  of Eq. 5 ,  



giv ing  
- x = R = + ( &  (7) 

where R i s  the  nxn matr ix ,  the columns of which a r e  the  n canonical vec tors  
'k, k=1,2, . .n.  
xn+l, xn+2, ...xN. a i s  the  n-vector (a1,  ... an) and b the  (N-n) vec tor  

( b l ,  b2, . - . h - n )  = (an+l, an+2, ... a ~ ) ~ ,  where "t" denotes t h e  t ranspose 

of a matr ix .  The components o f =  and 4 represent ,  except f o r  a change i n  
s i g n ,  the input  sequence to be applied t o  the  p l a n t ,  From Eq. 7 ,  

Q i s  the  nx(N-n) matr ix  with columns the canonical  vec tors  t 
a2, 

t 

(8) 1 R- 5 = 2 + R- 'Q~  . 
Define 

This  premul t ip l ica t ion  of Eq.  7 by the  matr ix  R-' e f f e c t i v e l y  takes  the vec to r  
- x i n  X ,  the  s t a t e  space,  t o  the  vec to r  s i n  C ,  where C i s  a new n-space, t he  
coordinates  of which a r e  the f i r s t  n canonical vec to r s  _rl, g2,  . . zn. 
reason f o r  doing t h i s  is merely t o  s impl i fy  l a t e r  manipulations. 
c a l l  C the  "canonical vec tor  space". c i s  merely the  i n i t i a l  s t a t e  1~ express-  
ed a s  a l i n e a r  combination of t h e  f i r s t  n canonical  vec tors .  The nx(N-n) 
mat r ix  H, which w e  s h a l l  c a l l  the "derived matrix", having derived i t  from 
the  l a s t  N-n canonical vec to r s ,  i s  a s  fundamental t o  the r egu la to r  problem 
wfth more than n inputs  a s  the  matrix R - 1  i s  fundamental t o  the  simple l i n e a r  
t i m e  optimal r egu la to r .  Thus by premult iplying the  o r i g i n a l  r ep resen ta t ion ,  
Eq. 6 ,  by R-1  w e  have the considerably s impl i f ied  r ep resen ta t ion ,  

The 
We s h a l l  

The energy consumption can a l s o  be w r i t t e n  compactly as  

where D i s  the  diagonal matr ix  with elements dkk = d ( k ) ,  k=1,2 , . .n ,  and F i s  
the  (N-n)x(N-n) diagonal matr ix  wi th  elements fkk = d(k+n), k=1,2,  ... N-n. 
From Eq. 10, 

4 

S u b s t i t u t i n g  a from Eq. 12 i n t o  E q .  11 reduces the  energy func t ion  t o  a 
func t ion  of N-n independent va r i ab le s ,  the  components of b, giving 
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(13) 
t t 

E = (E - Hb) D (c-Hb_) + F b, 

E = - 2ctDW_ +ht [H'DH + F] b (15) 

D i f f e r e n t i a t i n g  E with respec t  t o  each of the  components of b,bp: p = 1, 2 ,  
.... N-n, w e  f ind  (see Appendix I) by s e t t i n g  aE = 0 t h a t  a minimum of 
E i s  obtained when ab, 

Subs t i t u t e  Eq. 10 i n t o  Eq. 16,  e l imina t ing  c, we obta in  

(17) 
t 

H D H ~  + ~b = H ~ D ~  + H ~ C H ~ .  

Then 

Subs t i t u t e  Eq. 18 i n t o  Eq. 11, t o  ob ta in  

(19) 
-1 t - a = s - H F  H D a  

so  t h a t  w e  have 

-1 t [I +HF H D]-. = c 

where I is  the  nxn i d e n t i f y  matrix. 

Let 

-1 t B = I + H F  H D 

Then 
-1 - a = B  c 

-1 The ex is tence  of B 
equat ion giving a simple expression f o r  the  value of the  minimal energy by 
s u b s t i t u t i n g  Eq .  18 i n t o  Eq. 11 giving 

i s  proved i n  Appendix 11. Now we obta in  the  f i n a l  

t t t  t t  
E = q D a + b _ H D g =  [-it+b H I D &  

5 



Thus 

t E = s D a  

I n  summary, the  important equations a re  repeated below. 

From the representa t ion  of  the i n i t i a l  s t a t e  c i n  C w e  had 

The energy consumption i n  tak ing  t o  the  o r i g i n  i s  then 

t t which i s  minimized when Fb_ = H 

where 

Da ,  wi th  the  minimum value E = c Dg 

-1 - a = B  c 

and 

-1 t b, = F H D a .  

E q .  27 and Eq. 28 give with Eq.  1 

t 
[m(l), m ( 2 ) ,  .... m(n)] = [-al, -a2,  .... -a  n 3 = -g 

To demonstrate t he  way i n  which these r e s u l t s  a r e  applied t o  a p r a c t i c a l  
problem w e  i l l u s t r a t e  a suggested design procedure by a worked example. 

EXAMPLE 

Consider the  simple second order p l a n t  descr ibed by the  t r a n s f e r  
func t ion  below, whose input i s  the output of a zero order  hold,  M ( s ) ,  and 
whose output i s  Y ( s ) .  Then 

yo= 1 
M ( s )  s ( s+ l )  

Let the s t a t e  var iab les  be x ( t )  = y ( t ) ,  x 2 (t) = + ( t ) .  y ( t )  i s  the  
t i m e  dependent system output ,  ana 9 the  t i m e  de r iva t ive  of t he  system output 
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(pos i t i on  and ve loc i ty  f o r  example). 
d i f f e r e n t i a l  equat ion,  

E q .  29 then gives the following vec tor  

where m is  t h e  system input .  For a given i n i t i a l  condi t ion ~ ( 0 ) ,  t he  s o l u t i o n  
of Eq.  30 i s  

Eq .  31 may be expressed i n  compact form as  

Then i n  the  system representa t ion  of Eq.  2, 

G(T) = [ 1 ll;] and h(T) = 

e-T+T- 1 

-T 1-e 
(33) 

With a sampling period T = 1 sec ,  the  canonical vec tors  a re  given by E q .  4, 
f o r  k = l ,  2 ,  .... N 

Let us a r b i t r a r i l y  choose N = 4 .  Then 

-0.7182 -3.6706 
R =  [ 

1.7182 4.6706 
(35) 

and 
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. 

2 10.107 
22 

1 

- c = R -1  ~ ( 0 )  = L r-::::: j 

-11.6961 -33.5118 

12.6961 34.5118 
Q =  [ 

-1 

-2.7183 -10.107 

= [ 3.7183 11.107 ] 
Then we obtain the derived matrix H = R Q as 

L e t  us a l s o  choose the i n i t i a l  state x (0) = 1, x (0) = 0 .  Then 1 2 

-1 t 
we readi ly  find I + H F H D i s  given by - 

(37) 

- 10.107~11.10 
39 1 

d22 Idll[ -2.7::1~3.7183 -10.107~11.107 + ll.1072] 22 1 
f22 

Let us consider t w o  cases .  

(a) No t i m e  weighting D = I ,  F = I 

[: (b) Time weighting, D = 

Case(a) D = I ,  F = I 

-1 From E q .  27, a = B 2, we obtain I;:] = 1.457 0.405 

0.405 0.366 

-1 t t and f r o m  E q .  28, b_ = F H Da = H 2 

1.582 

-0.582 = [:I:::] 
8 



= [ -2.7183 3 . 7 1 8 1  [0 .4871 = [ 0.26431 

-10.107 11.107 0.4275 -0.1794 

Case (b).  

and Eq. 27,  

With dll = 1, d22 = 2, f l l  = 3, f 2 2  = 4,  we  ob ta in  from Eq. 39 

= 1 . 6 5 9 6  0 . 5 7 6 7  1 .5821 = [0.7078] 

0.2884 0.2661 -0.582 0.3014 

and from Eq. 28 

(43) 
-0.1149 

Thus w e  have found the minimal energy representa t ion  (case a)  and the  time 
weighted minimal energy representat ion (case b) f o r  the  i n i t i a l  s t a t e  x1 = 1, 
x2 = 0.  
cases .  

We f i n d ,  

It i s  i n t e r e s t i n g  t o  compare the  input  energ ies  of the  d i f f e r e n t  

2 2  
2 Case (a) a: + a + bl + bi = 0.5226, N = 4 

2 2 Case (b) a2 + a2  + bl + bi = 0.6161, N = 4 1 

2 2  
al + a 2  Case (c) = 2.8415, N = 2 (time-optimal) 

We see t h a t  although the  time-optimal con t ro l  takes  only two sampling per iods 
to se t t le ,  giving the  f a s t e s t  response when s a t u r a t i o n  does not l i m i t  t he  input ,  
i t  consumes over f i v e  times the energy of the minimal energy case and more 
than four  times t h a t  of the  t i m e  weighted energy case.  

The representa t ion ,  the vectors  3 and b ,  can be used i n  two ways. 

1. From Eq. 1 ,  i f  we allow 

m(k) = -a  k=1,2 k’ 

m(k+2) = -bk, k=1,2 

9 



a s  the input  sequence then w e  can consider the i n i t i a l  s t a t e  t o  be some 
d is turbed  s t a t e  t h a t  w e  wish t o  re turn  t o  the  des i red  state,  the o r i g i n  
of the  s t a t e  space. 

t b 

2.  I f  w e  allow 

m(k) = + %, k=l ,  2 

m(k+2) = +bk, k= l ,  2. 

t he  input  sequence then the  " i n i t i a l  s t a t e "  g can be considered as  
the  des i red  f i n a l  state and the o r ig in  the  i n i t i a l  s t a t e .  This sequence 
w i l l  be used i n  the  ca l cu la t ions  following. 

By a s u i t a b l e  transformation the o r i g i n  of the s t a t e  space can e a s i l y  
be moved t o  any des i red  po in t ,  and we can then use the vec tors  2 and b_ 
a s  the  input  sequence t o  take any s t a t e  t o  o r  from any o ther  s t a t e ,  i n  N 
sampling per iods and with a t i m e  weighted energy cons t r a in t .  

A p l o t  of t he  output of the  plant  with t i m e  i s  given i n  Fig.  1, for 

The inputs  required f o r  each output 
t he  two d i f f e r e n t  cos t  funct ions.  A t h i r d  p l o t ,  t h a t  of the  time-optimal 
case2 i s  a l s o  shown f o r  comparison. 
a r e  shown i n  Fig. 2. The slope of the  output ,  the  ve loc i ty ,  can be found 
a t  t he  t i m e  when the  outputs are  a t  90% of t h e i r  f i n a l  value.  These ve l -  
o c i t i e s  a r e ,  see Fig.  1, 

Case (a )  0.262 a t  t 5 3.1 secs .  

Case (b) 0.206 a t  t c 2.9 secs .  

Case (c)  0.377 a t  t =5 1 . 5  secs .  (time-optimal) 

DISCUSSION 

( 4 4 )  

I n  the  l i g h t  of the example the advantages of the method a re  c l e a r l y  
seen. The method allows the immediate and s t ra ightforward c a l c u l a t i o n  of 
an input  sequence which not only considerably reduces the  chances of s a t -  
u ra t ion  but a l so ,  when D and F a re  both i d e n t i t y  mat r ices ,  minimizes the 
energy required by the  system. The t i m e  weighted case can be used when, 
f o r  some p r a c t i c a l  reason, it i s  desired t o  place the  main burden of con t ro l  
on a c e r t a i n  sec t ion  of the input sequence. I n  the  example w e  emphasized 
the r o l e  of t he  e a r l y  inputs  and lessened the e f f e c t  of the l a t e r  inputs .  
This con t ro l  s t i l l  r e t a i n s  the deadbeat response and the  ease  of ca l cu la t ion  
of the  inpu t s ,  while s t i l l  requir ing much smaller  input  magnitudes and input 
energy chan the  t i m e  optimal regulator .  
the  f a c t  t h a t  we approach the  f i n a l  s t a t e  gradual ly ,  as shown i n  Eq.  44. A 
descending vehic le  should not  have high v e l o c i t i e s  near  the  touchdown po in t ,  

Of considerable va lue ,  however, i s  



as  any e r r o r s  i n  measurement could not be cor rec ted  i n  time. I n  genera l ,  by 
saving seve ra l  sampling per iods for  the  f i n a l  s e t t l i n g  t i m e  w e  should have 
enough t i m e  t o  allow f o r  any e r r o r  t h a t  might exis t .  We a l s o  observe,  from 
F ig .  1, t h a t  the  t i m e  weighted minimum energy con t ro l  gives a f a s t e r  r i s e  
t i m e  the  the  ordinary minimum energy con t ro l .  

I n  summary, the  advantages of the  t i m e  weighted minimum energy con t ro l  
over minimum energy con t ro l  a re  tha t  by a s u i t a b l e  choice of I) and F, i t  i s  
poss ib l e  t o  approach the  terminal s t a t e  more gradual ly  and y e t ,  f o r  a given 
N > n ,  have a f a s t e r  rise time. It should be noted t h a t  these  improvements 
a re  not  r e s t r i c t e d  t o  the  p a r t i c u l a r  D and F used i n  the  example, so t h a t  
o t h e r  choices  could give s t i l l  g rea t e r  improvements. 

CONCLUSIONS 

A procedure has been developed f o r  designing the t i m e  weighted minimum 
energy d i sc re t e -da ta  con t ro l  of an n- th  order  p l a n t ,  extending the  r e s u l t s  
of a previous r epor t  4. 
and discussed with the  a id  of an example. 
i s  the derived matr ix ,  the  use of which gives  the  des i red  con t ro l  i n  a very 
simple manner. 

It has  been demonstrated that the  chances of s a t u r a t i o n  are reduced by 
inc reas ing  the  allowed , s e t t l i n g  t i m e ;  N sampling-perfodg. 
t i m e  op t imal ' cont to ; t , i s  not  of primary importance t h i s  method can be sucess- 
f u l l y  appl ied t o  the  problem of input s a tu ra t ion .  

of sampling per iods and the  corresponding minimum energy f o r  a given i n i t i a l  
s t a t e .  
and can be employed by the  system designer t o  choose, f o r  example, the  value 
of N f o r  a given minimum energy consumption and i n i t i a l  s t a t e .  This inform- 
a t i o n  w i l l  enhance the  usefulness  of t h i s  and the  previous r epor t  4 .  
i n  t h i s  general  a rea  i s  being continued wi th  a d e t a i l e d  study of t he  s a t u r a t i o n  
problem. 

The advantages of the  design have been demonstrated 
The bas i s  of the  design procedure 

The procedure can be used wi th  p l an t s  of any order  and type.  

Since i n  many cases  

A forthcoming r epor t  w i l l  d i scuss  the  r e l a t ionsh ips  between the  number 

Such r e l a t ionsh ips  can be developed with the  use of the  der ived matr ix  

Research 
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APPENDICES 

I .  Derivation of E q .  16; [HtDH + F] 12 = H t D g .  

E q .  15 s ta tes  

Theref ore , 

E = - ctDg - 2_ctDHb + bt [ HtDH + F] & 

= rtDg - 2_btHtDc + bt [HtDH + F] 

= -2HtDc + 2 b t D H  + F]  b_ . 

Sett ing  = Q, we obtain direct ly  
ab, 

H DH + F = H ~ D ~  . [ '  1 
Since we obtain on further differentation,  

, which has pos i t ive  elements, 

E q .  15 i s  the condition for a minimum of the cost  function E .  

12 



-1 t -1 I1 . Given B = I + H F H D ,  show t h a t  B e x i s t s .  

We s h a l l  prove t h a t  B i s  a pos i t i ve  d e f i n i t e  matr ix ,  from which i t  follows 
d i r e c t l y  t h a t  the  inverse of B does e x i s t .  

-1 Appendix i s  contained i n  Hadley . 
diagonal  matrix wi th  elements 

The background ma te r i a l  f o r  t h i s  
6 

For convenience l e t  N-n = . p .  L e t  F = F1 F t  , where F1 i s  the  p x p 

1 f j j  = l/Kj , j = 1, 2 ,  .. p.  

Then 

where 

.c 101: i = 1, 2, . . n.  h i j  i s  the  i , j - t h  element of H. We can then express  

HF''H~D i n  the  form, 

J L 

L e t  us  c a l l  the  f i r s t  matr ix  W. Then 

-1 t HF H D  = WD 

W i s  simply the  Grammian of the  vectors  wi , i = 1, 2 ,  . . n ,  and thus each of 
the  p r i n c i p a l  minors of W i s  pos i t ive  semi-def in i te ,  s ince  each p r i n c i p a l  
minor i s  i t s e l f  a Grammian. The pr inc ipa l  minor of WD of order  m i s  then 

dl l ,dz2 . - - d,, 
p o s i t i v e  semi-def ini te ,  and i t s  eigenvalues a r e  p i  > 0 f o r  i = 1, 2, .  * n .  

t i m e s  the  pr inc ipa l  minor of order  m of W. Thus HF-lHtD i s  
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The eigenvalues of I + HF-lHtD are then 
clearly positive. Thus 
does exist. 

1 + pi , i = 1, 2, . . n, which are 
B = I + HF'IHtD is itself positive definite, and B - 1  

Q.E.D. 
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- (a) minimum energy, N = 4 

(b) t i m e  weighted minimum energy, N = 4 

( c )  time optimal, N = 2 
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Fig .  1 .  System output responses 

(c )  t i m e  optimal, N = 2 

(b) t i m e  weighted minimum energy, N = 4 
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